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Abstract

The last decade has seen a noticeable shift to missing data handling techniques that assume a
missing at random (MAR) mechanism, where the propensity for missing data on an outcome is
related to other analysis variables. Although MAR is often reasonable, there are situations where
this assumption is unlikely to hold, leading to biased parameter estimates. One such example is a
longitudinal study of substance use where participants with the highest frequency of use also have
the highest likelihood of attrition, even after controlling for other correlates of missingness.
There is a rather large body of literature on missing not at random (MNAR) analysis models for
longitudinal data, particularly in the field of biostatistics. Because these methods allow for a
relationship between the outcome variable and the propensity for missing data, they require a
weaker assumption about the missing data mechanism. This manuscript describes two classic
MNAR modeling approaches for longitudinal data, the selection model and the pattern mixture
model. To date, these models have been slow to migrate to the social sciences, in part, because
they required complicated custom computer programs. These models are now quite easy to
estimate in popular structural equation modeling programs, particularly Mplus. The purpose of
this manuscript is to describe these MNAR modeling frameworks and to illustrate their
application on a real data set. Despite their potential advantages, MNAR-based analyses are not
without problems and also rely on untestable assumptions. This paper offers practical advice for

implementing and choosing among different longitudinal models.



Missing Not At Random Models 3

Missing data handling techniques have received considerable attention in the
methodological literature during the last 40 years. This literature has largely discredited most of
the simple procedures that have enjoyed widespread use for decades, including methods that
discard incomplete cases (e.g., listwise deletion, pairwise deletion) and approaches that impute
the data with a single set of replacement values (e.g., mean imputation, regression imputation,
last observation carried forward). The last decade has seen a noticeable shift to analytic
techniques that assume a missing at random (MAR) mechanism, whereby an individual’s
propensity for missing data on a variable Y is potentially related to other variables in the analysis
(or in the imputation model), but not to the unobserved values of Y itself (Little & Rubin, 2002;
Rubin, 1976). Maximum likelihood estimation and multiple imputation are arguably the
predominant MAR-based approaches, although inverse probability weighting methods have
gained traction in the statistics literature (e.g., Carpenter, Kenward, & Vansteelandt, 2006; Robins
& Rotnitzky, 1995; Scharfstein, Rotnitzky, & Robins, 1999). A number of resources are available to
readers who are interested in additional details on these methods (e.g., Carpenter et al., 2006;

Enders, 2010; Little & Rubin, 2002; Rotnitzky, 2009; Schafer, 1997; Schafer & Graham, 2002).

Although the MAR mechanism is often reasonable, there are situations where this
assumption is unlikely to hold. For example, in a longitudinal study of substance use, it is
reasonable to expect participants with the highest frequency of use to have the highest likelihood
of attrition, even after controlling for other correlates of missingness. Similarly, in a study that
examines quality of life changes throughout the course of a clinical trial for a new cancer
medication, it is likely that patients with rapidly decreasing quality of life scores are more likely to
leave the study because they die or become too ill to participate. The previous scenarios are
characterized by a relationship between the outcome variable (i.e., substance use, quality of life)

and the propensity for missing data. This so-called missing not at random (MNAR) mechanism is
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problematic because MAR-based analyses are likely to produce biased parameter estimates.
Unfortunately, there is no empirical test of the MAR mechanism, so it is generally impossible to

fully rule out MNAR missingness. This underscores the need for MNAR analysis methods.

There is a rather large body of literature on MNAR analysis models for longitudinal data,
particularly in the field of biostatistics (e.g., Albert & Follmann, 2000, 2009; Diggle & Kenward,
1994; Follmann & Wu, 1995; Molenberghs & Kenward, 2007; Little, 1995, 2009; Verbeke,
Molenberghs, & Kenward, 2000; Wu & Bailey, 1989; Wu & Carroll, 1988). This literature addresses
a wide variety of substantive applications and includes models for categorical outcomes, count
data, and continuous variables, to name a few. Although researchers are sometimes quick to
discount MAR-based analyses, MNAR models are not without their own problems. In particular,
MNAR analyses rely heavily on untestable assumptions (e.g., normally distributed latent
variables), and even relatively minor violations of these assumptions can introduce substantial
bias. This fact has led some methodologists to caution against the routine use of these models
(Demirtas & Schafer, 2003; Schafer, 2003). A common viewpoint is that MNAR models are most
appropriate for exploring the sensitivity of one’s results to a variety of different assumptions and
conditions. Despite their potential problems, MNAR models are important options to consider,
particularly when outcome-related attrition seems plausible. At the very least, these procedures

can augment the results from an MAR-based analysis.

Although MNAR analysis models have been in the literature for many years, they have
been slow to migrate to the social and the behavioral sciences. To date, most substantive
applications have appeared in the medical literature (e.g., Hogan, Roy, & Korkontzelou, 2004;
Kenward, 1998; Michiels, Molenberghs, Bijnens, Vangeneugden, & Thijs, 2002). The adoption of

any novel statistical procedure is partially a function of awareness but is also driven by software
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availability. MNAR analyses were traditionally difficult to implement because they required
complicated custom programming. These models are now quite easy to estimate in popular
structural equation modeling programs, particularly Mplus (Muthén & Muthén, 1998-2010).
Consequently, the purpose of this manuscript is to describe two “classic” MNAR modeling
families for longitudinal data - selection models and pattern mixture models — and illustrate their
use on a real data set. Methodologists continue to develop MNAR analysis methods, most of
which extend the models that I describe in this paper (e.g., Beunckens, Molenberghs, Verbeke, &
Mallinckrodt, 2008; Dantan, Proust-Lima, Letenneur, & Jacqmin-Gadda, 2008; Lin, McCulloch, &
Rosenheck, 2004; Muthén, Asparouhov, Hunter, & Leuchter, in press; Roy, 2003; Roy & Daniels,
2008; Yuan & Little, 2009). By limiting the scope of this manuscript to classic techniques, I hope
to provide readers with the necessary background information for accessing these newer

approaches. Muthén et al. (in press) provide an excellent overview of these recent innovations.

The organization of the manuscript is as follows. The paper begins with an overview of
Rubin’s (1976) missing data theory, including a discussion of how selection models and pattern
mixture models fit into Rubin’s definition of an MNAR mechanism. After a brief review of growth
curve models, I then describe classic selection models and pattern mixture models for
longitudinal data. Next, I use a series of data analysis examples to illustrate the estimation and
interpretation of the models. The manuscript concludes with a discussion of model selection and

sensitivity analyses.

Theoretical Background

Some background information on Rubin’s (1976) missing data theory is useful for
understanding the rationale behind MNAR analysis models. According to Rubin, the propensity

for missing data is a random variable that has a distribution. In practical terms, this implies that
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each variable potentially yields a pair of scores: an underlying Y value that may or may not be
observed, and a corresponding R value that denotes whether Y is observed or is missing (e.g., R=
o0 if Yis observed and R=1if Y is missing). Under an MNAR mechanism, the data and the

probability of missingness have a joint distribution

p(YivRilgi d)) (1)

where p denotes a probability distribution, Y; is the outcome variable for case i, R; is the
corresponding missing data indicator, 6 is a set of parameters that describes the distribution of Y
(e.g., growth model parameters), and ¢ contains parameters that describe the propensity for
missing data on Y (e.g., a set of logistic regression coefficients that predict R). Collectively, the
parameters of the joint distribution dictate the mutual occurrence of different Y values and

missing data.

Under an MAR mechanism, Equation 1 simplifies, and it is unnecessary to estimate the
parameters that dictate missingness (i.e., ¢). For this reason, an MAR mechanism is often
referred to as ignorable missingness. In contrast, an MNAR mechanism requires an analysis
model that includes all parameters of the joint distribution, not just those that are of substantive
interest. In practical terms, this means that the statistical analysis must incorporate a submodel
that describes the propensity for missing data (e.g., a logistic regression that predicts R). Both the
selection model and the pattern mixture model incorporate a model for R into the analysis, but

they do so in different ways.
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The selection model and the pattern mixture model factor the joint distribution of Y and R
into the product of two separate distributions. In the selection modeling framework, the joint

distribution is

where p(Y;]0) is the marginal distribution of Y, and p(R;|Y;, ¢) is the conditional distribution of
missing data, given Y. The preceding factorization implies a two-part model where the marginal
distribution corresponds to the substantive analysis (e.g., a growth model), and the conditional
distribution corresponds to a regression model that uses Y to predict the probability of missing
data. The regression of R on Y is inherently inestimable because Y is always missing whenever R
equals one. The selection model achieves identification by imposing strict distributional
assumptions, typically multivariate normality. The model tends to be highly sensitive to this

assumption, and even slight departures from normality can produce substantial bias.

In the pattern mixture modeling framework, the factorization reverses the role of Y and R

as follows

p(Y;, R;|0,¢) = p(Yi|R;, 0)p(R;|¢) (3)

where p(Y;|R;, 0) is the conditional distribution of Y, given a particular value of R, and p(R;|¢) is
the marginal distribution of R. The preceding factorization implies a two-part model where the

conditional distribution of Y represents the substantive model parameters for a group of cases
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that shares the same missing data pattern, and the marginal distribution of R describes the
incidence of different missing data patterns. This factorization implies the following strategy:
stratify the sample into subgroups that share a common missing data pattern and estimate the
substantive model separately within each pattern. Although it is not immediately obvious, the
pattern mixture model is also inestimable without invoking additional assumptions. For example,
a growth model is underidentified in a group of cases with only two observed data points, so these
assumptions would take the form of assumed values for the inestimable parameters. I discuss
these assumptions in detail later in the manuscript, but suffice to say that the model is prone to

bias when its assumptions are incorrect.

The selection model and pattern mixture model are equivalent in the sense that they
describe the same joint distribution. However, because the two frameworks require different
assumptions, they can (and often do) produce very different estimates of the substantive model
parameters. There is usually no way to judge the relative accuracy of the two models because
both rely heavily on untestable assumptions. For this reason, methodologists generally
recommend sensitivity analyses that apply different models (and thus different assumptions) to
the same data. I illustrate the application of these models to longitudinal data later in the

manuscript.

Brief Overview of Growth Curve Models

Much of the methodological work on MNAR models has centered on longitudinal data
analyses, particularly growth curve models (also known as mixed effects models, random
coefficient models, and multilevel models). Because this manuscript focuses solely on
longitudinal data analyses, a brief overview of the growth curve model is warranted before

proceeding. A growth model expresses the outcome variable as a function of a temporal predictor
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variable that captures the passage of time. For example, the unconditional linear growth curve

model is

Yii = Bo + B1(TIMEy) + by, + by, (TIMEy;) + & (4)

where Y, is the outcome score for case i at time t, TIME,; is the value of the temporal predictor for
case i at time t (e.g., the elapsed time since the onset of the study), S, is the mean intercept, 3, is
the mean growth rate, by, and by, are residuals (i.e., random effects) that allow the intercepts and
the change rates, respectively, to vary across individuals, and ¢&; is a time-specific residual that
captures the difference between an individual’s fitted linear trajectory and their observed data.
The model can readily incorporate non-linear change via polynomial terms. For example, the

unconditional quadratic growth model is

Yy = Bo + BL(TIMEy) + B (TIMEZ) + by, + by, (TIMEy;) + by, (TIMEZ) + & (5)

where S, is the mean intercept, f; is the average instantaneous linear change when TIME equals
zero, and f3, is the mean curvature. As before, the model uses a set of random effects to
incorporate individual heterogeneity in the developmental trajectories (i.e., by, by , and b,;), and

&; is a time-specific residual.

The previous models are estimable from the multilevel, mixed model, or the structural

equation modeling frameworks. Structural equation modeling - and the Mplus software package,
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in particular - provides a convenient platform for estimating MNAR models. Cast as a structural
equation model, the individual growth components (i.e., by, by, and b,,) are latent variables, the
means of which (i.e., By, B1, and B;) define the average growth trajectory. To illustrate, Figure 1
shows a path diagram of a linear growth model from a longitudinal study with four equally spaced
assessments. The unit factor loadings for the intercept latent variable reflect the fact that the
intercept is a constant component of each individual’s idealized growth trajectory, and the
loadings for the linear latent variable capture the timing of the assessments (i.e., the TIME scores
in Equation 4). A quadratic growth model incorporates an additional latent factor with loadings
equal to the square of the linear factor loadings. A number of resources are available to readers
who want additional details on growth curve models (Bollen & Curran, 2006; Hancock &
Lawrence, 2006; Hedeker & Gibbons, 2006; Singer & Willett, 2003). As an aside, mixed modeling
software programs (e.g., PROC MIXED in SAS) can also estimate some of the MNAR models that I
describe in this manuscript (e.g., the selection models). Although different modeling frameworks
often yield identical parameter estimates, the latent growth curve approach is arguably more

convenient for implementing MNAR models.

Selection Models for Longitudinal Data

Heckman (1976, 1979) originally proposed the selection model as a bias correction method
for regression analyses with MNAR data on the outcome variable. Like their classic predecessor,
selection models for longitudinal data combine a substantive model (i.e., a growth curve model)
with a set of regression equations that predict missingness. The two parts of the model
correspond to the factorization on the right side of Equation 2. The literature describes two
classes of longitudinal models that posit different linkages between the repeated measures

variables and the missing data indicators. The Wu and Carroll (1988) model indirectly links the
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repeated measures variables to the response probabilities via the individual intercepts and slopes
(i.e., the by, and b, terms in Equation 4). This approach is commonly referred to as the random
coefficient selection model or the shared parameter model'. In contrast, the Diggle and Kenward
(1994) selection model directly relates the probability of missing data at time ¢ to the outcome
variable at time t. Although these models have commonalities, they require somewhat different
assumptions and may produce different estimates. This section provides a brief description of the
two models, and a number of resources are available to readers who are interested in additional
technical details (Albert & Follmann, 2009; Diggle & Kenward, 1994; Little, 2009; Molenberghs &

Kenward, 2007; Verbeke, Molenberghs, & Kenward, 2000).

The Wu and Carroll Model

The Wu and Carroll (WC) model uses the individual growth trajectories to predict the
probability of missing data at time ¢t. To illustrate, Figure 2 shows a path diagram of a linear WC-
type growth curve model. The rectangles labeled R,, R;, and R, are missing data indicators that
denote whether the outcome variable is observed at a particular assessment (e.g., R, = 0 if Y, is
observed and R, =1if Y, is missing). Note that the model does not require an R, indicator when
the baseline assessment is complete, as is the case in the figure. The dashed arrows that link the
latent variables (i.e., the individual intercepts and slopes) to the missing data indicators represent
logistic regression equations®. Regressing the indicator variables on the intercepts and slopes
effectively allows the probability of missing data to depend on the entire set of repeated measures

variables, including the unobserved scores from later assessments. Although this proposition may

" Authors often treat the shared parameter model as a distinct MNAR approach. Because the structural
features of the Wu and Carroll model are similar to those of the Diggle and Kenward model (i.e., one or
more variables from the substantive model predict missingness), I treat both as selection models.

* A logistic model is not the only possibility for the missing data indicators. Probit models are also
common.
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seem awkward, linking the response probabilities to the intercepts and slopes is useful when
missingness is potentially dependent on an individual’s overall developmental trajectory rather

than a single error-prone realization of the outcome variable (Albert & Follmann, 2009; Little,

1995).

The Diggle and Kenward Model

The Diggle and Kenward (DK) model also combines a growth curve model with a set of
regression equations that predict missingness. However, unlike the WC model, the probability of
missing data at wave t depends directly on the repeated measures variables. To illustrate, Figure 3
shows a path diagram of a linear DK growth curve model. As before, the rectangles labeled R,, R;,
and R, are missing data indicators that denote whether the outcome variable is observed or
missing, and the dashed arrows represent logistic regression equations. Notice that the
probability of missing data at time t now depends directly on the outcome variable at time ¢ as
well as on the outcome variable from the preceding assessment (e.g., Y; and Y, predict R,, Y, and

Y; predict R;, and so on).

As an aside, the logistic regression equations in the previous models potentially carry
information about the missing data mechanism. For example, in the DK model, a significant path
between R, and Y; implies an MNAR mechanism because dropout at wave ¢ is concurrently related
to the outcome. Similarly, a significant association between R, and Y., provides evidence for an
MAR mechanism because dropout at time t is related to the outcome at the previous assessment.
Finally, the absence of any relationship between the outcomes and the missing data indicators is
consistent with an MCAR mechanism because dropout is unrelated to the variables in the model.
Although it is tempting to use the logistic regressions to make inferences about the missing data

mechanism, it is important to reiterate that these associations are only estimable because of strict
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distributional assumptions. Consequently, using the logistic regressions to evaluate the missing

data mechanism is tenuous, at best.

Selection Model Assumptions

Although it is immediately obvious, longitudinal selection models rely on distributional
assumptions to achieve identification, and these distributional assumptions dictate the accuracy
of the resulting parameter estimates. For the WC model, identification is driven by distributional
assumptions for the random effects (i.e., the individual intercepts and slopes), whereas the DK
model requires distributional assumptions for the repeated measures variables. Without these
assumptions, the models are inestimable (e.g., in the DK model, the regression of R, on Y is
inestimable because Y is always missing whenever R equals one). With continuous outcomes, the
typical practice is to assume a multivariate normal distribution for the individual intercepts and
slopes or for the repeated measures variables. The WC model additionally assumes that the
repeated measures variables and the missing data indicators are conditionally independent, given
the random effects (i.e., after controlling for the individual growth trajectories, there is no
residual correlation between Y; and R;). Collectively, these requirements are difficult to assess
with missing data, so the accuracy of the resulting parameter estimates ultimately relies on one or

more untestable assumptions.

Coding the Missing Data Indicators

Thus far, I have been purposefully vague about the missing data indicators because the
appropriate coding scheme depends on the exact configuration of missing values. The WC and
DK models were originally developed for studies with permanent attrition (i.e., a monotone
missing data pattern). In this scenario, it makes sense to utilize discrete-time survival indicators,

such that R, takes on a value of zero prior to dropout, a value of one at the assessment where
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dropout occurs, and a missing value code at all subsequent assessments (e.g., Muthén & Masyn,
2005; Singer & Willett, 2003). In contrast, when a study has only intermittent missing values, it is
reasonable to represent the indicators as a series of independent Bernoulli trials, such that R,
takes on a value of zero at any assessment where Y, is observed and takes on a value of one at any

assessment where Y, is missing.

Most longitudinal studies have a mixture of sporadic missingness and permanent attrition.
One option for dealing with this configuration of missingness is to use discrete-time survival
indicators to represent the dropout patterns and code intermittent missing values as though they
were observed (i.e., for intermittently missing values, R, takes on a value of zero). Because
intermittent missingness is not treated as a target event, this coding strategy effectively assumes
that these values are consistent with an MAR mechanism. A second option for dealing with
intermittent missingness and permanent attrition is to create indicators that are consistent with a
multinomial logistic regression (Albert & Follmann, 2009; Albert, Follmann, Wang, & Suh, 2002),
such that the two types of missingness have distinct numeric codes. I illustrate these various

coding strategies in the subsequent data analysis examples.

Pattern Mixture Models for Longitudinal Data

Like the selection model, the pattern mixture approach integrates a model for the missing
data into the analysis, but it does so in a very different way. Specifically, a pattern mixture
analysis stratifies the sample into subgroups that share the same missing data pattern and
estimates a growth model separately within each pattern. For example, in a four-wave study with
a monotone missing data pattern, the complete cases would form one pattern, the cases that drop
out following the baseline assessment would constitute a second pattern, the cases that leave the

study after the second wave form a third pattern, and the cases with missing data at the final
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assessment only comprise the fourth pattern. Assuming a sufficient sample size within each
pattern, the four missing data groups would yield unique estimates of the growth model
parameters. Returning to Equation 3, these pattern-specific estimates correspond to the

conditional distribution p(Y;|R;, ), and the group proportions correspond to p(R;|¢).

Although the pattern-specific estimates are often informative, the usual substantive goal is
to estimate the population growth trajectory. Computing the weighted average of the pattern-
specific estimates yields a marginal estimate that averages over the distribution of missingness.

For example, the average intercept from the hypothetical four-wave study is

EO = ﬁ(l)ﬁél) + ﬁ(z)ﬁéz) + ﬁ(3)ﬁ”(§3) + ﬁ(4)ﬁ§4) 6)

where the numeric superscript denotes the missing data pattern, 7(P) is the proportion of cases in

missing data pattern p, and Aép) is the pattern-specific intercept estimate. Importantly, a pattern

mixture analysis does not automatically produce standard errors for the average estimates
because these quantities are a function of the model parameters. Consequently, it is necessary to
use the multivariate delta method to derive an approximate standard error (Hedeker & Gibbons,
1997; Hogan & Laird, 1997). Fortunately, performing these additional computations is

unnecessary because Mplus can readily compute the average estimates and their standard errors.

As an aside, stratifying cases by missing data pattern is also an old MAR-based strategy
that predates current maximum likelihood missing data handling techniques (Muthén, Kaplan, &
Hollis, 1987). This so-called multiple group approach used between-pattern equality constraints

on the model parameters to trick existing structural equation modeling programs into producing
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a single set of MAR-based estimates. Although this procedure closely resembles a pattern mixture
model, forcing the missing data patterns to have the same parameter estimates effectively ignores

the pattern-specific conditioning that is central to the MNAR factorization in Equation 3.

Model Identification

Although its resemblance to a multiple group analysis makes the pattern mixture model
conceptually straightforward, implementing the procedure is made difficult by the fact that one
or more of the pattern-specific parameters are usually inestimable. To illustrate, consider a four-
wave study that employs a quadratic growth model. The model is identified only for the subgroup
of participants with complete data. For cases with two complete observations, the linear trend is
estimable but the quadratic coefficient and certain variance components are not. The
identification issue is most evident in the subgroup that drops out following the baseline

assessment, where neither the linear nor the quadratic coefficients are estimable.

Estimating a pattern mixture model requires the user to specify values for the inestimable
parameters, either explicitly or implicitly. Using code variables as predictors in a growth model is
one way to accomplish this (Hedeker & Gibbons, 1997, 2006). For example, Hedeker and Gibbons
(1997) classified participants from a psychiatric drug trial as completers (cases with data at every
wave) or dropouts (cases that left the study at some point after the baseline assessment), and they
subsequently included the binary missing data indicator as a predictor of the intercepts and
slopes in a linear growth model. A linear model with the missing data indicator as the only

predictor would be
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Yii = Bo + B1(TIME;) + B2 (DROPOUT;) + B3(DROPOUT;)(TIME,;)

(7)
+bo, + by (TIME;) + &

where DROPOUT denotes the missing data pattern (o = completers, 1 = dropouts), 8, and f; are
the mean intercept and slope, respectively, for the complete cases, 3, is the intercept difference
for the dropouts, and B3 is the slope difference for dropouts. The Hedeker and Gibbons (1997,
2006) approach achieves identification by sharing information across patterns. For example, the
model in Equation 7 implicitly assumes that early dropouts have the same developmental
trajectory as the cases that drop out later in the study. The model also assumes that all missing

data patterns share the same covariance structure.

A second estimation strategy is to implement so-called identifying restrictions that
explicitly equate the inestimable parameters from one pattern to the estimable parameters from
one or more of the other patterns. Later in the manuscript, I illustrate three such restrictions: the
complete case missing variable restriction, the neighboring case missing variable restriction, and
the available case missing variable restriction. As its name implies, the complete case missing
variable restriction equates the inestimable parameters to the estimates from the complete cases.
The neighboring case missing variable restriction replaces inestimable parameters with estimates
from a group of cases that share a comparable missing data pattern. For example, in a four-wave
study, the cases that drop out after the third wave can serve as a donor pattern for the cases that
drop out after the second wave, such that the two patterns share the same quadratic coefficient.
Finally, the available case missing variable restriction replaces inestimable growth parameters
with the weighted average of the estimates from other patterns. Still considering a group of cases

with two observations, this identifying restriction would replace the inestimable quadratic term
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with the average coefficient from the complete cases and the cases that drop out following the
third wave. Additional details and examples of various identification strategies are available
elsewhere in the literature (Demirtas & Schafer, 2003; Enders, 2010; Molenberghs, Michiels,
Kenward, & Diggle, 1998; Thijs, Molenberghs, Michiels, & Curran, 2002; Verbeke & Molenberghs,

2000).

Pattern Mixture Model Assumptions

The assumed values for the inestimable parameters dictate the accuracy of the pattern
mixture model. To the extent that the values are correct, the model can reduce or eliminate the
bias from an MNAR mechanism. However, like the selection model, there is ultimately no way to
gauge the accuracy of the resulting estimates, and implementing different identification
constraints can (and often does) produce disparate sets of results. At first glance, the need to
specify values for inestimable parameters may appear to be a serious weakness of the pattern
mixture model. However, some methodologists argue that this requirement is advantageous
because it forces researchers to make their assumptions explicit. This is in contrast to the
selection model, which relies on implicit distributional assumptions that are unobvious. This
aspect of the pattern mixture model also provides flexibility because it allows researchers to
explore the sensitivity of the substantive model parameters to a number of different identification
constraints (i.e., assumed parameter values). In truth, the previous identifying restrictions are
simply arbitrary rules of thumb for generating parameter values. Any number of other
restrictions is possible (e.g., a restriction that specifies a flat trajectory shape after the last
observed data point; Little, 2009), and performing a sensitivity analysis that applies a variety of

identification strategies to the same data is usually a good idea.
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Data Analysis Examples

To date, applications of longitudinal models for MNAR data are relatively rare in the social
and the behavioral sciences, perhaps because these analyses have traditionally required complex
custom programming. Software availability is no longer a limiting factor because the Mplus
package provides a straightforward platform for estimating a variety of selection models and
pattern mixture models. This section describes a series of data analyses that apply the MNAR
models from earlier in the manuscript. The Mplus 6 syntax files for the analyses are available at

www.appliedmissingdata.com/papers.

The analysis examples use the psychiatric trial data from Hedeker and Gibbons (1997,
2006)°. Briefly, the data were collected as part of the National Institute of Mental Health
Schizophrenia Collaborative Study and consist of repeated measurements from 437 individuals.

In the original study, participants were assigned to one of four experimental conditions (a placebo
condition and three drug regimens), but the subsequent analyses collapse these categories into a
dichotomous treatment indicator (o = placebo, 1 = drug). The primary substantive goal is to
assess treatment-related changes in illness severity over time. The outcome was measured on a 7-
point scale, such that higher scores reflect greater severity (e.g., 1 = normal, not at all ill; 7 =
among the most extremely ill). Most of the measurements were collected at baseline, week one,
week three, and week six, but a small number of participants also had measurements at week two,
week four, or week five. To simplify the presentation, I excluded these irregular observations
from all analyses. Finally, note that the discrete measurement scale violates multivariate
normality, by definition. Although these data are still useful for illustration purposes, the

normality violation is likely problematic for the selection model analyses.

* The data are used here with Dr. Hedeker’s permission and are available at his website:
http://tigger.uic.edu/~hedeker/long.html
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The data set contains nine distinct missing data patterns that represent a mixture of
permanent attrition and intermittent missingness. The leftmost panel of Table 1 summarizes
these patterns. To provide some sense about the developmental trends, Figure 4 shows the
observed means for each pattern by treatment condition. The fitted trajectories in the figure
suggest non-linear growth. In their analyses of the same data, Hedeker and Gibbons (1997, 2006)
linearize the trajectories by modeling illness severity as a function of the square root of weeks.
Although this decision is very sensible, I used a quadratic growth model for the subsequent
analyses because it provides an opportunity to illustrate the complexities that arise with MNAR

models, particularly pattern mixture models with identifying restrictions. The analysis model is

Yy = Bo + B1(TIME) + B, (TIMEZ) + Bs(DRUG;) + Bs(DRUG)(TIME;)

+ Bs(DRUG,)(TIMEZ) + by, + by, (TIME;) + by, (TIMEZ) + &

where B, B1, and B, define the average growth trajectory for the placebo cases (i.e., DRUG = o),

and f,, Bs, and B¢ capture the mean differences between the treatment conditions.

In an intervention study, the usual goal is to assess treatment group differences at the end
of the study. Centering the temporal predictor at the final assessment (e.g., by fixing the final
slope factor loading to a value of 0) addresses this question because the regression of the intercept
on treatment group membership quantifies the mean difference. However, implementing
identifying restrictions in a pattern mixture model is made easier by centering the intercept at the
baseline assessment, particularly when permanent attrition is the primary source of missingness.
Consequently, I fixed the linear slope factor loadings to values of o, 1, 3, and 6 for all subsequent

analyses (the quadratic factor loadings are the squares of these values). Despite this
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parameterization, it is straightforward to construct a test of the endpoint mean difference.
Algebraically manipulating the growth model parameters gives the model-implied mean

difference at the final assessment

.’jDrug — Aplacebo = ﬁA3 +6- 34» + 36+ [’35 (9)

where the f§ terms are the regression coefficients that link the growth factors to the treatment
indicator (i.e., the latent mean differences), 6 is the value of the linear factor loading at the final
assessment (i.e., the time score, weeks since baseline), and 36 is the corresponding quadratic
factor loading. Among other things, the MODEL CONSTRAINT command in Mplus allows users
to define new parameters that are functions of the estimated parameters. In the subsequent
analyses, I used this command to estimate the mean difference in Equation g and its standard

error.
MAR-Based Growth Curve Model

As a starting point, I used MAR-based maximum likelihood missing data handling to
estimate the quadratic growth curve model. Figure 5shows the path diagram for the analysis.
Table 2 lists the estimates and the standard errors for selected parameters, and Figure 6 displays
the corresponding model-implied trajectories. The figure clearly suggests that participants in the
drug condition experienced greater reductions in illness severity relative to the placebo group.
However, it is important to emphasize that these estimates assume that an individual’s propensity
for missing data at week ¢ is completely determined by treatment group membership or by his or

her severity score at earlier assessments (i.e., the missing values conform to an MAR mechanism).
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Substituting the appropriate quantities from the maximum likelihood analysis into Equation 9
gives a mean difference of -1.424 (SE = 182, p < .001). Expressed relative to the model-implied
estimate of the baseline standard deviation (i.e., the square root of the sum of the intercept

variance and the residual variance), the standardized mean difference is d = 1.563.

Diggle and Kenward Selection Models

Mplus is ideally suited for estimating selection models because it can accommodate
normally distributed (e.g., the repeated measures) and categorical outcomes (e.g., the missing
data indicators) in the same model. To illustrate, I fit two DK-type selection models to the
psychiatric trial data. The first analysis treated permanent attrition (patterns 2 through 4) as
MNAR and treated intermittent missingness (patterns 5 through 9) as MAR. As noted previously,
missing data indicators that are consistent with a discrete-time survival model are appropriate
when modeling permanent dropout. Normally, a set of three missing data indicators could
represent the dropout patterns in Table 1, but the small number of cases in pattern 4 made it
impossible to model attrition at the second assessment. Consequently, the model incorporated

indicator variables at the final two waves with the following coding scheme

0 observed or intermittent missingness
R; =11 dropoutattimet
99 dropout at previous time

where 99 represents a missing value code. Importantly, assigning a code of o to the intermittently
missing values effectively defines sporadic missingness (patterns 5 though 9) as MAR. Finally,

note that the pattern 4 cases had indicator codes of R; =1and R, = 99. This treats the missing Y,



Missing Not At Random Models 23

values are MAR and the missing Y; values as MNAR dropout. The middle panel of Table 1

summarizes the indicator codes for each missing data pattern.

Figure 7 shows a path diagram of the DK selection model. The different types of dashed
arrows represent equality constraints on the regression coefficients in the logistic part of the
model (e.g., the regression of R, on Y, is set equal to the regression of R; on Y;). Describing the
specification of a discrete-time survival model is beyond the scope of this manuscript, but readers
that are interested in the rationale behind these constraints can consult Singer and Willett (2003)

and Muthén and Masyn (2005), among others.

Table 3 gives selected parameter estimates and standard errors from the analysis. The
model-implied growth trajectories were quite similar to those in Figure 6, although the selection
model produced a larger mean difference between the treatment conditions at week six.
Specifically, substituting the appropriate estimates into Equation 9 yields a model-implied mean
difference of -1.665 (SE = 198, p < .001) at the final assessment. Expressed relative to the model-
implied estimate of the baseline standard deviation, this mean difference corresponds to a
standardized effect size of d =1.810. Notice that the selection model produced the same
substantive conclusion as the maximum likelihood analysis (i.e., the drug condition experienced
greater reductions in illness severity), albeit with a larger effect size. Again, the normality

violation should cast doubt on the validity of the selection model estimates.

Turning to the logistic portion of the model, the regression coefficients quantify the
influence of treatment group membership and the repeated measures variables on the hazard
probabilities (i.e., the conditional probability of dropout, given participation at the previous
assessment). For example, the significant positive association between R, and Y, suggests that

participants with higher illness severity scores at wave t were more likely to drop out, even after
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controlling for treatment group membership and scores from the previous assessment. Although
the accuracy of this coefficient depends on untenable distributional assumptions, it does provide
some evidence for an MNAR mechanism. It is important to note that estimating the model from
100 random starting values produced two sets of solutions with different logistic regression
coefficients (the log likelihood values were -2565.814 and -2573.115). In the second solution, the
association between R; and Y, switched signs, such that cases with lower illness severity scores
were more likely to drop out. It is unclear whether this sensitivity to different starting values is a
symptom of model misspecification (e.g., the logistic portion of the model omits an important
predictor of missingness) or normality violation. Because these models are weakly identified to
begin with, a quadratic model may be too complex, although a linear model showed similar
instability. Regardless of the underlying cause, this finding underscores the importance of using

random starting values when estimating these models.

The previous analysis treated intermittent missing values as MAR. As an alternative,
creating indicators that are consistent with a multinomial logistic regression can distinguish
between intermittent and permanent missing values (Albert & Follmann, 2009; Albert, Follmann,

Wang, & Suh, 2002). The coding scheme below is one such example

intermittent missingness at time ¢
dropout at time ¢

observed at time t

99 dropout at an earlier time

=
&
I
N = O

where 99 is a missing value code. By default, Mplus treats the highest non-missing category (e.g.,

2) in a multinomial logistic regression as the reference group, so assigning the highest code to the
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observed values yields logistic regression coefficients that quantify the probability of each type of
missingness relative to complete data. After minor alterations to accommodate sparse missing
data patterns, I estimated the DK model under this alternate coding scheme. The rightmost panel
of Table 1 summarizes the indicator coding for the analysis. The model with multinomial
indicators produced mean difference and effect size estimates that were quite similar to those of
the previous DK model. The logistic portion of the model was also comparable. The similarity of
the two coding schemes suggests that treating intermittent missing values as MAR had very little
impact on the final estimates, perhaps due to the fact that permanent attrition accounts for the

vast majority of the missing data.

Wu and Carroll Selection Model

In the previous DK models, the probability of missing data was directly related to the
repeated measures variables. In contrast, the WC selection model uses individual intercepts and
slopes as predictors of missingness. Although it is possible to recast both of the previous DK
models as WC models, only the model with discrete-time survival indicators converged to a
proper solution. Consequently, I limit the subsequent discussion to an analysis that treated
permanent attrition (patterns 2 through 4) as MNAR and treated intermittent missingness
(patterns 5 through 9) as MAR. The missing data indicators were identical to the discrete-time
coding scheme in the middle panel of Table 1 (i.e., o = observed or intermittent missingness, 1 =
dropout at time t, 99 = dropout at a previous time). An initial analysis failed to converge because
the latent variable covariance matrix was not positive definite. Constraining the quadratic factor
variance to zero eliminated this problem and produced plausible parameter estimates. Because of
this modification, the final model used treatment group membership and the individual

intercepts and linear slopes to predict attrition. Figure 8 shows a path diagram of the final model.
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As before, different types of dashed arrows represent equality constraints on the regression

coefficients in the logistic part of the model.

It is important to note that estimating the model from 100 random starting values
produced 85 convergence failures, even after eliminating the quadratic variance from the model.
The 15 sets of starts that successfully converged produced comparable log likelihood values but
slightly different parameter estimates. Simplifying the model by examining change as a linear
function of the square root of time reduced this problem and produced sets of solutions with
identical estimates and identical log likelihood values. This finding suggests that a quadratic
model is too complex for these data, but it could also be the case that model misspecification or
normality violations are contributing to the convergence failures. For the illustration purposes, |
report the quadratic model estimates from the solution with the highest log likelihood, but these

results should be viewed with caution.

Table 4 gives selected parameter estimates and standard errors from the WC selection
model. The WC model produced smaller effect size than the DK selection model. Specifically,
substituting the appropriate estimates into Equation g yields a mean difference of -1.363 (SE =
183, p < .001) at the final assessment and a standardized effect size of d = 1.576. Turning to the
logistic portion of the model, the regression coefficients quantify the influence of the individual
intercepts and linear slopes on the hazard probability. Because the time scores are centered at
the baseline assessment, the linear slope represents instantaneous change at the beginning of the
study. Consequently, the negative coefficient for the regression of R, on the linear growth factor
suggests that participants who experienced immediate reductions in illness severity were most
likely to drop out, even after controlling for initial severity level (i.e., the intercept) and treatment

group membership.
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Overview of the Pattern Mixture Models

Hedeker and Gibbons (1997, 2006) illustrate a pattern mixture modeling approach that
uses the missing data pattern (represented by one or more dummy variables) as a predictor in the
growth model. This method is advantageous because standard mixed modeling procedures (e.g.,
the MIXED procedures in SPSS and SAS) can estimate the model. Mplus offers finite mixture
modeling options (Muthén & Shedden, 1999) that are ideally suited for implementing a variety of
other pattern mixture models that are difficult or impossible to estimate with standard software
(e.g., pattern mixture models with identifying restrictions). Because Hedeker and Gibbons
thoroughly describe the use of pattern indicators as predictors of growth, I limit the subsequent
examples to pattern mixture models with identifying restrictions. Interested readers can consult

Muthén et al. (in press) for other interesting variations of the pattern mixture model.

Within the Mplus finite mixture modeling framework, each missing data pattern functions
as a pseudo latent class. In the conventional pattern mixture model, these “classes” simply reflect
a manifest grouping variable that is derived from the observed missing data patterns. For
example, in a simple model, the complete cases could form one class, and the cases with one or
more missing values could comprise a second class. The KNOWNCLASS subcommand in Mplus
uses a grouping variable from the input data set to assign cases to classes with a probability of
zero or one. Although the pattern mixture models in this section are effectively multiple group
growth models, the finite mixture modeling framework provides a convenient mechanism for
implementing various identifying restrictions (a multiple group model does not allow the user to
specify equality constraints for inestimable parameters). Roy (2003) and Muthén et al. (in press)

describe modeling variations that treat class membership as a true latent variable.



Missing Not At Random Models 28

Returning to the psychiatric trial data, Figure 4 shows the observed means and the fitted
trajectories for each of the nine missing data patterns. With a small number of patterns and a
sufficiently large sample size, it would be possible to define each pattern as a distinct class, but
the number of cases in patterns 4 through 9 precludes this option. To simplify the models, I
reduced the number of classes by aggregating patterns with comparable trajectory shapes.
Considering the first three patterns, there appears to be a relationship between dropout time and
the rate of initial decline, such that rapid improvement is associated with earlier dropout, at least
in the drug condition. Consequently, it is reasonable to treat the first three patterns as distinct
classes. Although the decision was somewhat arbitrary, I combined patterns 3 and 4 because
these groups were comparable with respect to the timing of dropout. Next, consider the cases
with intermittent missingness (patterns 5 through 9). Although it is reasonable to treat these
patterns as a distinct group, the trajectory shapes roughly resemble the growth curves for the
complete cases. Because the BIC values from a series of preliminary analyses clearly favored a
model that combined patterns 5 through g with pattern 1, the final set of pattern mixture models
used three classes: (a) cases with complete data and intermittent missing values, (b) cases that
dropped out after the third assessment, and (c) cases that dropped out after the first or the

second assessment.

Recall that pattern mixture models are inherently underidentified because they typically
involve one or more inestimable parameters. With respect to the mean structure, classes 1 and 2
have sufficient data to estimate a quadratic trend, but the quadratic intercept and the regression
of the quadratic growth factor on the treatment group indicator are inestimable for class 3. The
subsequent models used one of three identifying restrictions to achieve identification. The
complete case missing variable restriction equated the inestimable quadratic parameters to those

of class 1 (complete data and intermittent missingness). The second model implemented the
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neighboring case missing variable restriction by replacing the inestimable parameters with those
of class 2 (dropout after the third assessment). The final model used the available case missing
variable restriction and equated the quadratic parameters for class 3 to the weighted average of
the estimates from classes 1 and 2. In Mplus, specifying between-class equality constraints (e.g.,
using the MODEL CONSTRAINT command) implements these restrictions. Although the same
identification strategies are applicable to the covariance structure, the subsequent models

assumed a common covariance matrix for the three classes.

Complete Case Missing Variable Restriction

Recall that the pattern mixture model produces unique parameter estimates for each class
(i.e., estimates that are conditional on the missing data pattern). Although the substantive goal is
to generate a single set of estimates that averages across the distribution of missing data, it is
important to inspect the class-specific results. To better illustrate the estimates, panel A of Figure
9 shows the model-implied growth curves for each class. Notice that the fitted trajectories for the
class 3 drug condition and the class 2 placebo condition fall outside the plausible score range. For
class 3, the identifying restriction clearly underestimated the degree of curvature. For class 2, the
mean structure was identified, but attrition at the final assessment produced an inaccurate
extrapolation. After some experimentation, changing the constrained value of the class 3
regression coefficient from .021 to .080 produced a reasonable trajectory that stayed within
bounds. Similarly, constraining the class 2 intercept to a value of .070 or lower returned plausible

estimates.

At first glance, it may seem unreasonable to arbitrarily change parameter values.
However, it is important to remember that the identifying constraints essentially represent

assumptions about trajectory shapes that would have been observed, had the data been complete.
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Because the growth curves in panel A clearly represent incorrect predictions about the
unobserved data points, it is difficult to defend a set of marginal estimates that average across the
missing data patterns. Consequently, model modification seems necessary in this case. In truth,
the identifying restrictions are nothing more than arbitrary rules of thumb for generating
plausible parameter values, so viewing the restrictions as tentative starting points for estimation

and altering them as needed is a sensible strategy.

After implementing new parameter constraints, the model produced plausible class-
specific estimates. The top section of Table 5 gives the updated estimates, and panel B of Figure 9
displays the corresponding model-implied trajectories. Computing the weighted mean of the
class-specific values yields an estimate of the population growth trajectory that averages over the

distribution of missingness. For these analyses, the population estimate is

0 =700 4 7DD 4 zDHB) (10)

where the numeric superscript denotes the missing data pattern, (P) is the proportion of cases in
missing data class p, and §P) is the class-specific estimate. Because the averaging process is

identical for all estimates,  generically denotes a model parameter.

Table 6 gives the average estimates and the standard errors for selected parameters. The
trajectory shapes from the pattern mixture model resemble those from the previous analyses, but
the mean difference at the final assessment is somewhat larger. Specifically, using the class-
specific coefficients to construct a mean difference for each missing data pattern and computing

the weighted average of these estimates gives a difference of -1.827 (SE = .374, p < .001) at the final
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assessment. Expressed relative to the model-implied estimate of the baseline standard deviation,
this mean difference equates to a standardized effect size of d = 2.019. Because the marginal
estimates (i.e., the result of Equation 10) are a function of the model parameters, a pattern
mixture analysis does not automatically produce standard errors. Consequently, it is necessary to
use the multivariate delta method to derive an approximate standard error (Hedeker & Gibbons,
1997; Hogan & Laird, 1997). Fortunately, the Mplus MODEL CONSTRAINT command can
generate the average estimates and their standard errors, so further computations are
unnecessary. Descriptions of the multivariate delta method are available elsewhere in the
literature (MacKinnon, 2008; Raykov & Marcoulides, 2004), and Enders (2010) sketches the

computational details for various identifying restrictions.

Neighboring Case Missing Variable Restriction

The second pattern mixture model analysis used the neighboring case missing variable
restriction to equate the inestimable quadratic parameters for class 3 (dropout after the second
assessment) to the estimates from class 2 (dropout after the third assessment). Consistent with
the complete case restriction, the initial estimates produced fitted trajectories that fell outside the
plausible score range. Panel C of Figure 9 shows the model-implied growth trajectories from the
initial analysis. Some experimentation revealed that constraining the quadratic intercept for
pattern 2 (and by extension, the quadratic intercept for pattern 3) to a value of .070 or lower
produced growth curves that stayed within bounds. The middle portion of Table 5 lists the class-
specific estimates from the revised model, and panel D of Figure g displays the corresponding

trajectories.

Table 6 gives the average estimates and the standard errors from the neighboring case

missing variable restriction. The model-implied mean difference is -1.957 (SE = .522, p < .001), and
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the corresponding effect size is d = 2.163. The effect size difference is largely due to the elevated
growth trajectory for the placebo condition in class 3. Again, it is important to reiterate that the
differences between the two models result from applying different sets of assumptions about the

unobserved data. There is no way to empirically assess the accuracy of competing estimates.

Available Case Missing Variable Restriction

The final analysis implemented the available case missing variable restriction. Recall that
this approach achieves identification by equating an inestimable parameter to the weighted
average of the estimates from other patterns. Applied to the current example, the available case
restriction replaced the quadratic intercept for class 3 (dropout after the second assessment) with
the weighted average of the intercept estimates from the first two classes. The weight for class 1
was 336/389 = .864, and the weight for class 2 was 53/389 = .136. Consistent with the previous
analyses, the initial model produced trajectories that fell outside the plausible score range (see
Panel E of Figure 9). Because the available case restriction applied the largest weight to the
estimates from the complete cases, the growth curves in panel E closely resemble those from the
complete case missing variable restriction in panel A. Changing class 1’s contribution to the
inestimable regression coefficient from .021 to .080 and constraining the quadratic intercept for
class 2 to a value of .070 or lower produced plausible growth curves. Notice that these are the
same modifications from the previous analysis. The bottom section of Table 5 gives the class-
specific estimates from the revised model, and panel F of Figure g displays the corresponding

trajectories.

Table 6 displays the population estimates and their standard errors. Perhaps not
surprisingly, the available case restriction produced estimates that were virtually identical to

those of the complete case missing variable restriction. The similarity owes to the fact that
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complete cases primarily determined the values of the inestimable parameters (the weight for this
group was .864, as compared to .136 for class 2). The mean difference and standardized effect size
values from the analysis (-1.845 and 2.038, respectively) were also virtually identical to those of the

complete case restriction (-1.827 and 2.019, respectively).

Analysis Summary

The preceding analysis examples applied seven different models - and thus seven sets of
assumptions - to the psychiatric trial data. Although the analyses produced the same substantive
conclusion (i.e., the drug group exhibited dramatic improvement relative to the placebo group),
the standardized effect size estimates had a range of nearly seven-tenths of a standard deviation
unit. Because the models applied different assumptions, this variation might not come as a
surprise. Nevertheless, the fluctuation in the effect size estimates is disconcerting. Had the
intervention effect not been so dramatic, it could have easily been the case that the models
produced conflicting evidence about the efficacy of the drug condition. Unfortunately, it is
relatively common for sensitivity analyses to produce discrepant estimates (Demirtas & Schafer,

2003; Foster & Fang, 2003). The next section offers some practical advice on model selection.

Choosing Among Competing Models

MNAR modeling is an active area of methodological research, and the procedures in this
manuscript represent just a few possible options. Given the wide array of analytic choices, model
selection becomes an important practical consideration; this is particularly true when different
models produce disparate estimates, as they do in the preceding examples. Although somewhat
disconcerting, it is impossible to provide general recommendations about model selection
because every analytic option - MAR or MNAR - relies on one or more untestable assumptions.

Although an MAR and an MNAR model may produce identical fit to the observed data, they make
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fundamentally different predictions about the unobserved score values (Molenberghs & Kenward,
2007). Because there is no way to empirically assess the validity of these predictions, model
selection is not about choosing a single “correct” model. Rather, researchers must choose the
model with the most defensible set of assumptions and construct a logical argument that defends
that choice. In some situations, it is possible to discount certain models a priori (e.g., the
preceding selection model analyses are suspect due to the normality violations). In other
situations, substantive considerations may lead researchers to prefer one model over the other.

This section outlines a few such considerations.

To begin, consider the selection modeling framework. Although the WC and DK models
have commonalities, study-specific features may influence model selection. To illustrate,
consider two hypothetical research scenarios. First, suppose that a psychologist is studying
quality of life in a clinical trial for a new cancer medication and finds that a number of patients
become so ill (i.e., their quality of life becomes so poor) that they can no longer participate in the
study. In this situation, it is reasonable to believe that attrition is related to one’s developmental
trajectory, such that patients with rapidly decreasing quality of life scores are most likely to leave
the study because they die or become too ill to participate. To the extent that this assumption is
correct, the WC model may be preferred because the developmental trajectories — as opposed to
single realizations of the quality of life measure - are probable determinants of missingness.
Methodologists have also suggested that the random coefficient model is well-suited for
situations where the outcome measure is highly variable over time (Albert & Follmann, 2009) or is

an unreliable indicator of an underlying latent construct (Little, 1995).

As a second example, consider a drug treatment study that tracks substance use in the

weeks following an intervention. In this situation, it seems plausible that attrition is related to
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the actual outcome at time ¢, such that participants who use drugs prior to an assessment fail to
show up because they will screen positive for substance use. The DK model may be most
appropriate for this scenario because the outcome scores at a particular time point - as opposed
to the developmental trends - are likely to determine missingness. Although the substantive
research problem may favor one selection model over the other, it is important to reiterate that
the data provide no basis for empirically comparing the two models. Consequently, conducting a

sensitivity analysis that fits both models to the same data is usually a good strategy.

Substantive and practical considerations also come into play with pattern mixture models.
The idea of estimating developmental trajectories separately for each missing data pattern is
intuitively appealing, particularly for researchers who are familiar with multiple group structural
equation models. In some situations, the class-specific estimates can provide additional insight
into one’s substantive hypotheses. For example, in an intervention study, it may be interesting to
examine the response to treatment within each dropout class in addition to estimating a marginal
treatment effect that averages over missing data patterns. Although the previous analysis
examples did not illustrate this possibility, the pattern mixture model can incorporate predictors
of dropout class membership. This too can provide useful substantive information (e.g., by
identifying factors that are related to dropout or to a particular developmental trajectory). One of
the pattern mixture model’s often-cited advantages is that it forces researchers to explicitly state
their assumptions in the form of values for the inestimable parameters. The identifying
restrictions that [ implemented in the earlier analysis examples are just a few possibilities, and
experimenting with different options is quite easy in Mplus. The ability to identify the members
of each missing data pattern is potentially useful in this regard. For example, if the members of a
particular dropout group share a common set of characteristics (e.g., in a school-based study, the

early dropout class has a high proportion of learning disabled children), it might be possible to
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use previous research or substantive knowledge to formulate reasonable predictions for the
inestimable parameters. The flexibility of the pattern mixture model makes it a highly useful tool

for conducting sensitivity analyses.

Sensitivity Analyses

In the missing data literature, a common viewpoint is that researchers should explore the
stability of their substantive conclusions by fitting alternate models to the same data. I previously
illustrated this procedure by fitting seven different models to the psychiatric trial data. Exploring
alternate models is just form of sensitivity analysis, and methodologists have outlined many other
procedures. Although it is impossible to briefly summarize the broad range of viewpoints and
analytic approaches from the sensitivity analysis literature, it is nevertheless important to raise
awareness of this topic. Molenberghs and colleagues (Molenberghs & Kenward, 2007;
Molenberghs, Verbeke, & Kenward, 2009) provide a detailed discussion of these procedures, and

this section summarizes a few of their key points.

Within a given modeling framework, it is useful to explore the sensitivity of key parameter
estimates to various model modifications. As an example, consider the selection modeling
framework. Both the DK and WC models are sensitive to minor violations of distributional
assumptions; the former assumes that the repeated measures variables are multivariate normal,
and the latter assumes that the random effects (i.e., the individual intercepts and slopes) are
normal. Examining the change in key parameter estimates after modifying distributional
assumptions is an important type of sensitivity analysis. Although it is not the only method for
doing so, finite mixture modeling (e.g., growth mixtures) is a useful tool for representing
nonnormal manifest variables as well as nonnormal random effects (McLachlan & Peel, 2000;

Muthén & Asparouhov, 2009). In the context of MNAR analyses, methodologists have outlined
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latent class versions of the DK- and WC-type selection models (Beunckens et al., 2008; Muthén et
al., in press) that are readily estimable with Mplus. Similar strategies are available for pattern

mixture models (Muthén et al., in press; Roy, 2003; Roy & Daniels, 2008).

Modifying the growth model’s covariance structure is second option for exploring
sensitivity within a given modeling framework. Conventional wisdom suggests that modifying
the covariance structure has little to no impact on average growth rate estimates (Singer &
Willett, 2003). In large part, this is due to the fact that the mean and the covariance structure are
independent in a complete-data maximum likelihood analysis (i.e., the off-diagonal elements in
the parameter covariance matrix equal zero). Because this independence is lost with missing
data, modifying the covariance structure (e.g., estimating class-specific variance components;
estimating residual covariances; introducing an alternate covariance structure) can potentially
alter the latent variable means; Molenberghs et al. (2009) give an example that illustrates this
point. Although it is unclear whether these modifications materially affect the performance of

MNAR models, they are nevertheless easy to implement.

Finally, methodologists have developed local influence statistics that attempt to identify
cases that unduly impact the parameters of the missingness model (e.g., the logistic regressions
from the DK model) or the substantive model. These statistics are conceptually similar to familiar
measures from the ordinary least squares regression literature (e.g., Cooks D). Although these
influence statistics do not necessarily identify respondents with an MNAR missingness
mechanism, they can provide important insight into the behavior of a model. For example, there
is evidence to suggest that a complete case with an anomalous score profile can influence
estimates in a way that gives credence to an MNAR mechanism (Jansen, Hens, Molenberghs,

Aerts, Verbeke, & Kenward, 2006; Kenward, 1998). Interested readers can consult various work by
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Molenberghs and colleagues for a detailed overview of local influence measures for missing data

analyses (Jansen et al., 2006; Molenberghs & Kenward, 2007; Molenberghs et al., 2009).

Discussion

Methodologists have long advocated for the use of MAR-based missing data handling
procedures. The MAR assumption is often very reasonable, but there are many situations where
missingness is related to the outcome variable itself. This so-called MNAR mechanism is
problematic because MAR-based procedures will produce biased estimates. MNAR analysis
models have received considerable attention in the biostatistics literature, particularly in the
context of longitudinal data. Although some of these models have been in the literature for many
years, they have been slow to migrate to the social and the behavioral sciences. The purpose of
this manuscript is to describe two classic MNAR modeling frameworks, the selection model and
pattern mixture model. The commonality among MNAR models is that they integrate a
submodel that describes the propensity for missing data into the analysis. The selection model
augments the growth curve analysis with a set of logistic regressions that describe the probability
of missing data at each occasion. The pattern mixture approach estimates the growth model
separately within each missing data pattern and subsequently averages over the missing data

patterns.

The fundamental problem with missing data analyses is that it is generally impossible to
fully rule out MNAR missingness; by the same token, it is impossible to disprove the MAR
assumption. Despite their intuitive appeal, MNAR analyses rely on untestable assumptions (e.g.,
normally distributed latent variables, accurate values for inestimable parameters), and relatively
minor violations of these assumptions can introduce substantial bias. The fact that MNAR

models produce accurate estimates under a relatively narrow range of conditions has led some
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methodologists to caution against their routine use. A common opinion is that these models are
most appropriate for sensitivity analyses that apply different models (and thus different

assumptions) to the same data.

MNAR analysis techniques continue to receive a great deal of attention in the
methodological literature and they are likely to gain in popularity. Despite their limitations, these
models are important options to consider, particularly when outcome-related attrition seems
plausible. At the very least, MNAR models can augment the results from an MAR-based analysis.
Although sensitivity analyses are useful for exploring the impact of modeling choices on key
parameter estimates, the observed data provide no basis for model selection. Ultimately,
choosing a missing data handling technique - be it MAR or MNAR - is really a matter of choosing
among a set of competing assumptions. Consequently, researchers should choose a model with
the most defensible set of assumptions and they should provide a logical argument that supports

this choice.
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Table 1

Missing Data Patterns and Indicator Codes for Data Analysis Examples
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Repeated Measures Dropout Codes Multinomial Codes

Pattern n Y, Y, Y, Y, R, R, R, R R,
1 312 @) @) @) @) 0 0 2 2 2
2 53 @) @) @) M 0 1 2 2 1
3 45 @) @) M M 1 99 2 1 1
4 3 @) M M M 1 99 2 1 1
5 1 @) M @) M o 1 o 2 1
6 13 @) @) M @) o 0 2 o 2
2 @) M M @) o 0 o 0 2

8 5 @) M @) @) o 0 o 2 2
9 3 M @) @) @) o 0 2 2 2

Note. O = observed, M = missing. For dropout codes, o = observed, 1 = dropout, and 99 = a missing value

code. For multinomial coding, o = intermittent missingness, 1 = dropout, and 2 = observed.
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Table 2
MAR-Based Maximum Likelihood Estimates

Parameter Est. SE p
Placebo Intercept 5.203 0.083 < .001
Placebo Linear -0.226 0.083 .001
Placebo Quadratic 0.013 0.013 .210
Intercept Difference -0.023 0.096 .8u
Linear Difference -0.481 0.095 <.001
Quadratic Difference 0.041 0.014 .001

Week 6 Difference -1.424 0.181 <.001
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Table 3
DK Selection Model Estimates with MNAR Dropout

Parameter Est. SE p
Placebo Intercept 5.259 0.081 < .001
Placebo Linear -0.137 0.071 .052
Placebo Quadratic 0.014 0.o11 199
Intercept Difference -0.011 0.094 .905
Linear Difference -0.509 0.087 <.001
Quadratic Difference 0.039 0.014 .004
Week 6 Difference -1.665 0.198 <.001
Y, — R, 2.266 0.531 <.001
Y. — R, -1.749 0.388 < .001

Treatment — R, 0.347 0.358 333
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Table 4
WC Selection Model Estimates with MNAR Dropout

Parameter Est. SE p
Placebo Intercept 5.274 0.080 <.001
Placebo Linear -0.199 0.051 < .001
Placebo Quadratic 0.002 0.009 791
Intercept Difference -0.05 0.094 .599
Linear Difference -0.435 0.068 <.001
Quadratic Difference 0.036 0.o11 .001
Week 6 Difference -1.363 0.183 <.001
Intercepts — R; 0.482 0.437 271
Linear Slopes — R, -5.825 2.681 .030

Treatment — R, -3.458 1.622 .033
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Table 5

Class-Specific Estimates from Pattern Mixture Models

Class 1 Class 2 Class 3
Parameter (n=336) (n=53) (n =48)

Complete Case Identifying Restriction

Placebo Intercept 5.154 5.456 5.722
Placebo Linear -0.278 -0.276 -0.216
Placebo Quadratic 0.021 0.070 0.021
Intercept Difference 0.125 -0.250 -0.356
Linear Difference -0.342 -0.878 -1.076
Quadratic Difference 0.021 0.040 0.080

Neighboring Case Identifying Restriction

Placebo Intercept 5.154 5.456 5.722
Placebo Linear -0.278 -0.276 -0.264
Placebo Quadratic 0.021 0.070 0.070
Intercept Difference 0.125 -0.250 -0.356
Linear Difference -0.342 -0.878 -1.037
Quadratic Difference 0.021 0.040 0.040

Available Case Identifying Restriction

Placebo Intercept 5.154 5.456 5.722
Placebo Linear -0.278 -0.276 -0.222
Placebo Quadratic 0.021 0.070 0.028
Intercept Difference 0.125 -0.250 -0.356
Linear Difference -0.342 -0.878 -1.071
Quadratic Difference 0.021 0.040 0.075

Note. Italic typeface denotes donor estimates for class 3, bold
typeface denotes constrained parameters.
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Table 6

Pattern Mixture Model Estimates Averaged Across Missing Data Patterns

CCMV NCMV ACMV
Parameter Est. SE Est. SE Est. SE
Placebo Intercept 5.253 0.079 5.253 0.079 5.253 0.079
Placebo Linear -0.271 0.069 -0.276 0.068 -0.271 0.069
Placebo Quadratic 0.027 0.010 0.033 0.008 0.028 0.009
Intercept Difference 0.027 0.092 0.027 0.092 0.026 0.092
Linear Difference -0.488 0.093 -0.484 0.096 -0.487 0.093
Quadratic Difference 0.030 0.014 0.026 0.020 0.029 0.014
Week 6 Difference -1.827 0.374 -1.957 0.522 -1.845 0.388

Note: CCMV = complete case missing variable restriction, NCMV = neighboring case
missing variable restriction, ACMV = available case missing variable restriction.
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Figure 1. Path diagram of linear growth model.
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Figure 2. Path diagram of a linear Wu and Carroll growth model.
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Figure 3. Path diagram of Diggle and Kenward linear growth model.
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Figure 4. Observed means and fitted trajectories for each of the nine missing data patterns in the
psychiatric trial data. The shaded circles denote the drug condition means and the clear circles

represent the placebo group means.
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Figure 5. Quadratic growth model for the psychiatric data. Note that figure omits the latent
variable intercepts and the residual covariances among the latent variables in order to reduce

visual clutter.
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Figure 6. Model-implied growth trajectories from the MAR-based maximum likelihood analysis.
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Figure 7. Diggle and Kenward quadratic growth model for the psychiatric data. Note that figure
omits the latent variable intercepts and the residual covariances among the latent variables in

order to reduce visual clutter.
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Figure 8. Wu and Carroll quadratic growth model for the psychiatric data. Note that figure omits
the latent variable intercepts and the residual covariances among the latent variables in order to

reduce visual clutter.
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Figure 9. Class-specific model-implied growth trajectories. The complete case missing variable
restriction generated panels A and B, the neighboring case missing variable restriction produced
panels C and D, and the available case missing variable restriction produced E and F. Panels A, C,

and E are implausible trajectories from initial analyses.
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Missing Not At Random Models for Latent Growth Curve Analyses

Mplus Syntax Files

TITLE:

MAR-based maximum likelihood analysis;
DATA:

file is drugtrial.dat;

VARIABLE:

names are id drug male yl y2 y3 y4 pattnum;

! id: participant id;

! drug: 0 = placebo, 1 = drug;

! male: 0 = female, 1 = male;

! yl: baseline severity score;

! y2: week 1 severity score;

! y3: week 3 severity score;

! y4: week 6 severity score;

! pattnum: missing data patterns from table 1;

usevariables are drug vyl vy2 y3 v4;
missing are all (99);

MODEL:

! quadratic growth model;
! () are parameter labels used in model constraint section;

icept linear quad | yl@0 y2@1 y3@3 y4@6;
yl - y4 (resvar);

icept (iceptvar);

icept on drug (b3);

linear on drug (b4);

quad on drug (bb);



MODEL CONSTRAINT:

! define new parameters not in the model;

new (meandiff effsize);

! compute endpoint mean difference (equation 9);

meandiff = b3 + 6*b4d + 36*b5;
effsize = meandiff / sqrt(iceptvar + resvar);

PLOT:

type is plot3;
series is yl - y4 (linear);
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TITLE:

Diggle and Kenward selection model with survival indicators;
DATA:

file is drugtrial.dat;

VARIABLE:

names are id drug male yl y2 y3 y4 pattnum;

! id: participant id;

! drug: 0 = placebo, 1 = drug;

! male: 0 = female, 1 = male;

! yl: baseline severity score;

! y2: week 1 severity score;

! y3: week 3 severity score;

! y4: week 6 severity score;

! pattnum: missing data patterns from table 1;
usevariables are drug yl v2 y3 vy4 r3 r4;
missing are all (99);

categorical are r3 r4;

! create survival model indicators, r3 and r4;
DATA MISSING:
names = y2 y3 y4;

type = sdropout;
binary = r3 r4;

ANALYSIS:
estimator = mlr;
integration = montecarlo;

starts = 100 100;
MODEL:

! quadratic growth model;
! () are parameter labels used in model constraint section;

icept linear quad | yl@0 y2@1 y3@3 y4@6;
yl - y4 (resvar);

icept (iceptvar);

icept on drug (b3);

linear on drug (b4);

quad on drug (bb);



r3
r3
r3
rd
rd
rd

logistic regressions;

on
on
on
on
on
on

MODEL

new (meandiff effsize);

meandiff = b3 + 6*b4d + 36*b5;
effsize = meandiff / sqrt(iceptvar + resvar);

define new parameters not in the model;

compute endpoint mean difference

PLOT:

y2 (logbl);
y3 (logb2);
drug (logb3);
y3 (logbl);
v4 (logb2);
drug (logb3);

CONSTRAINT:

type is plot3;
series is yl - y4

(equation 9);

(linear) ;
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TITLE:

Wu and Carroll selection (shared parameter) model with survival indicators;

DATA:

file is drugtrial.dat;

VARIABLE:

names are id drug male yl y2 y3 y4 pattnum;

! id: participant id;

! drug: 0 = placebo, 1 = drug;

! male: 0 = female, 1 = male;

! yl: baseline severity score;

! y2: week 1 severity score;

! y3: week 3 severity score;

! y4: week 6 severity score;

! pattnum: missing data patterns from table 1;
usevariables are drug yl vy2 y3 v4 r3 r4;
categorical are r3 r4;

missing are all (99);

! create survival model indicators, r3 and r4;
DATA MISSING:
names = y2 y3 y4;

type = sdropout;
binary = r3 r4;

ANALYSIS:
estimator = mlr;
integration = montecarlo;

starts = 100 100;
MODEL:

! quadratic growth model;
! () are parameter labels used in model constraint

icept linear quad | yl@0 y2@1 y3@3 y4@6;

yl - y4 (resvar);
icept (iceptvar);
quad@oO;

icept on drug (b3);
linear on drug (b4);
quad on drug (bb);

section;



! logistic regressions;

r3 on
r3 on
r4d on
r4d on

MODEL

! define new parameters not in the model;

icept (logbl);
linear (logb2);
icept (logbl);
linear (logb2);

CONSTRAINT:

new (meandiff effsize);

! compute endpoint mean difference

meandiff = b3 + 6*b4 + 36*b5;

effsize = meandiff / sqrt(iceptvar + resvar);

PLOT:

type is plot3;
series is yl - y4 (linear);

(equation 9);
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TITLE:

pattern mixture with complete case restriction;
DATA:

file is drugtrial.dat;

VARIABLE:

names are id drug male yl y2 y3 y4 pattnum;

! id: participant id;

! drug: 0 = placebo, 1 = drug;

! male: 0 = female, 1 = male;

! yl: baseline severity score;

! y2: week 1 severity score;

! y3: week 3 severity score;

! y4: week 6 severity score;

|

pattnum: missing data patterns from table 1;

usevariables are drug vyl y2 y3 y4 group;
missing are all (99);

! specify pseudo latent class variable and number of classes;
classes = pattern(3);

! define latent classes with manifest grouping variable;

knownclass = pattern(group = 1 group = 2 group 3);
DEFINE:

! collapse missing data patterns into grouping variable;

if (pattnum egq 1 or pattnum ge 5) then group = 1;
if (pattnum eqg 2) then group = 2;
if (pattnum eg 3 or pattnum eq 4) then group = 3;

ANALYSIS:

type = mixture;

MODEL:
$overall$

! quadratic growth model;
! () are parameter labels used in model constraint section;

icept linear quad | yl@0 y2@1 y3@3 y4@6;
yl - y4 (resvar);

icept (iceptvar);

icept on drug;

linear on drug;

quad on drug;
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! latent variable means used to compute proportions;

[pattern#l] (pllogit);
[pattern#2] (p2logit);

! class-specific models;
$pattern#l$

[icept] (iceptl):;

[linear] (linearl);

[quad] (quadl);

icept on drug (iondrugl);
linear on drug (londrugl);
quad on drug (gondrugl);

$pattern#2%

[icept] (icept2):;

[linear] (linear2);

[quad] (quad2);

icept on drug (iondrug2);
linear on drug (londrug2?);
quad on drug (gondrug2);

$pattern#3%

[icept] (icept3);

[linear] (linear3);

[quad] (quad3);

icept on drug (iondrug3);
linear on drug (londrug3);
quad on drug (gondrug3);

MODEL CONSTRAINT:
! implement identifying restrictions;
quad3 = quadl;

gondrug3 = .08;
quad2 < .07;

! define new parameters not in the model;

new(pil pi2 pi3 b0 bl b2 b3 b4 b5 meandiff effsize);

! compute pattern proportions;

pil = exp(pllogit)/ (exp(0) + exp(pllogit)
pi2 = exp(p2logit)/ (exp(0) + exp(pllogit)
pi3 = exp(0)/ (exp (0

+ exp(p2logit));
+ exp(p2logit));
) + exp(pllogit) + exp(p2logit));
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! compute average estimates (equation 10);

b0 = pil*iceptl + pi2*icept2 + pi3*icept3;

bl pil*linearl + pi2*linear2 + pi3*linear3;

b2 pil*gquadl + pi2*quad2 + pi3*quad3;

b3 = pil*iondrugl + pi2*iondrug2 + pi3*iondrug3;
b4 pil*londrugl + pi2*londrug2 + pi3*londrug3;
b5 = pil*gondrugl + pi2*gondrug2 + pi3*gondrug3;

! compute endpoint mean difference (equation 9);

meandiff = b3 + 6*b4d + 36*b5;
effsize = meandiff / sqrt(iceptvar + resvar);

PLOT:

type i1s plot3;
series is yl - y4 (linear);
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TITLE:

pattern mixture with neighboring case restriction;
DATA:

file is drugtrial.dat;

VARIABLE:

names are id drug male yl y2 y3 y4 pattnum;

! id: participant id;

! drug: 0 = placebo, 1 = drug;

! male: 0 = female, 1 = male;

! yl: baseline severity score;

! y2: week 1 severity score;

! y3: week 3 severity score;

! y4: week 6 severity score;

|

pattnum: missing data patterns from table 1;

usevariables are drug vyl y2 y3 y4 group;
missing are all (99);

! specify pseudo latent class variable and number of classes;
classes = pattern(3);

! define latent classes with manifest grouping variable;

knownclass = pattern(group = 1 group = 2 group 3);
DEFINE:

! collapse missing data patterns into grouping variable;

if (pattnum egq 1 or pattnum ge 5) then group = 1;
if (pattnum eqg 2) then group = 2;
if (pattnum eg 3 or pattnum eq 4) then group = 3;

ANALYSIS:

type = mixture;

MODEL:
$overall$

! quadratic growth model;
! () are parameter labels used in model constraint section;

icept linear quad | yl@0 y2@1 y3@3 y4@6;
yl - y4 (resvar);

icept (iceptvar);

icept on drug;

linear on drug;

quad on drug;
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! latent variable means used to compute proportions;

[pattern#l] (pllogit);
[pattern#2] (p2logit);

! class-specific models;
$pattern#l$

[icept] (iceptl):;

[linear] (linearl);

[quad] (quadl);

icept on drug (iondrugl);
linear on drug (londrugl);
quad on drug (gondrugl);

$pattern#2%

[icept] (icept2):;

[linear] (linear2);

[quad] (quad2);

icept on drug (iondrug2);
linear on drug (londrug2?);
quad on drug (gondrug2);

$pattern#3%

[icept] (icept3):;

[linear] (linear3);

[quad] (quad3);

icept on drug (iondrug3);
linear on drug (londrug3);
quad on drug (gondrug3);

MODEL CONSTRAINT:
! implement identifying restrictions;
quad3 = quad2;

gondrug3 = gondrug2;
quad2 < .07;

! define new parameters not in the model;

new(pil pi2 pi3 b0 bl b2 b3 b4 b5 meandiff effsize);

! compute pattern proportions;

pil = exp(pllogit)/ (exp(0) + exp(pllogit)
pi2 = exp(p2logit)/ (exp(0) + exp(pllogit)
pi3 = exp(0)/ (exp (0

+ exp(p2logit));
+ exp(p2logit));

) + exp(pllogit) + exp(p2logit));
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! compute average estimates (equation 10);

b0 = pil*iceptl + pi2*icept2 + pi3*icept3;

bl pil*linearl + pi2*linear2 + pi3*linear3;

b2 pil*gquadl + pi2*quad2 + pi3*quad3;

b3 = pil*iondrugl + pi2*iondrug2 + pi3*iondrug3;
b4 pil*londrugl + pi2*londrug2 + pi3*londrug3;
b5 = pil*gondrugl + pi2*gondrug2 + pi3*gondrug3;

! compute endpoint mean difference (equation 9);

meandiff = b3 + 6*b4d + 36*b5;
effsize = meandiff / sqrt(iceptvar + resvar);

PLOT:

type i1s plot3;
series is yl - y4 (linear);
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TITLE:

pattern mixture with available case restriction;
DATA:

file is drugtrial.dat;

VARIABLE:

names are id drug male yl y2 y3 y4 pattnum;

! id: participant id;

! drug: 0 = placebo, 1 = drug;

! male: 0 = female, 1 = male;

! yl: baseline severity score;

! y2: week 1 severity score;

! y3: week 3 severity score;

! y4: week 6 severity score;

|

pattnum: missing data patterns from table 1;

usevariables are drug vyl y2 y3 y4 group;
missing are all (99);

! specify pseudo latent class variable and number of classes;
classes = pattern(3);

! define latent classes with manifest grouping variable;

knownclass = pattern(group = 1 group = 2 group 3);
DEFINE:

! collapse missing data patterns into grouping variable;

if (pattnum egq 1 or pattnum ge 5) then group = 1;
if (pattnum eqg 2) then group = 2;
if (pattnum eg 3 or pattnum eq 4) then group = 3;

ANALYSIS:

type = mixture;

MODEL:
$overall$

! quadratic growth model;
! () are parameter labels used in model constraint section;

icept linear quad | yl@0 y2@1 y3@3 y4@6;
yl - y4 (resvar);

icept (iceptvar);

icept on drug;

linear on drug;

quad on drug;
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! latent variable means used to compute proportions;

[pattern#l] (pllogit);
[pattern#2] (p2logit);

! class-specific models;
$pattern#l$

[icept] (iceptl):;

[linear] (linearl);

[quad] (quadl);

icept on drug (iondrugl);
linear on drug (londrugl);
quad on drug (gondrugl);

$pattern#2%

[icept] (icept2):;

[linear] (linear2);

[quad] (quad2);

icept on drug (iondrug2);
linear on drug (londrug2?);
quad on drug (gondrug2);

$pattern#3%

[icept] (icept3):;

[linear] (linear3);

[quad] (quad3);

icept on drug (iondrug3);

linear on drug (londrug3);

quad on drug (gondrug3);

MODEL CONSTRAINT:

! implement identifying restrictions;
quad2 < .07;

quad3 = (336/389) *quadl + (53/389) *quad2;
gondrug3 = (336/389)*.08 + (53/389) *gondrug2;

! define new parameters not in the model;
new(pil pi2 pi3 b0 bl b2 b3 b4 b5 meandiff effsize);

! compute pattern proportions;

pil = exp(pllogit)/ (exp(0) + exp(pllogit) + exp(p2logit));
pi2 = exp(p2logit)/ (exp(0) + exp(pllogit) + exp(p2logit));
pi3 = exp(0)/ (exp(0) + exp(pllogit) + exp(p2logit));
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! compute average estimates (equation 10);

b0 = pil*iceptl + pi2*icept2 + pi3*icept3;

bl pil*linearl + pi2*linear2 + pi3*linear3;

b2 pil*gquadl + pi2*quad2 + pi3*quad3;

b3 = pil*iondrugl + pi2*iondrug2 + pi3*iondrug3;
b4 pil*londrugl + pi2*londrug2 + pi3*londrug3;
b5 = pil*gondrugl + pi2*gondrug2 + pi3*gondrug3;

! compute endpoint mean difference (equation 9);

meandiff = b3 + 6*b4d + 36*b5;
effsize = meandiff / sqrt(iceptvar + resvar);

PLOT:

type is plot3;
series is yl - y4 (linear);



